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AMSTRACT

The design principles for a gas flew reguieter which produces
prescribed tim dependent mass flow rates of gas are state. The
princip!es are discussed in terms of a pa sslve system of tanks
which are connecte in series by sonic throttles. Each tank pro-
duces one term of a temsporal polynomial. Certain considerations
prevent this being mae into a practical device. Alternate sys-
tons based on the, same principles but using promrnable regula-
tars instead of the tanks are described. One such system was
built and tested. It produced a satisfectory sixth-degre pelyne-
mial substitute for a prescribed expoenteiaelly increasing gas flow
rate program for a 600. kilewatt, two-arc plasm facility.
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1. Introduction

A gas flow regulator which can be adjusted to conform to a pre-
scribed time-dependent program is required in the development of the
8000-Kilowatt Plasma Facility at the Army Missile Command, Redstone
Arsenal, Alabama. This requires an exponentially increasing gas flow
rate with a maximum start-to-end flow rate ratio of 1:100 with an ad-
justable running time between 5 and 10 seconds. Variables such as
initial gas pressure and temperature are to be initial conditions which
can be changed in a more or less arbitrary manner. The regulator re-
quires built-in adjustments which can compensate for changed inputs.
The running time and the magnitudes of initial and final gas flow rates
must also be adjustable to accommodate the particular flow rate pro-
'gram required. A system based on the mass flow limitation property
of sonic orifices was designed and, in this particular case, on the
polynomial approximation for an exponential. Its operation was limited
to use with a two-arc, 600-kilowatt plasma facility, and as such is the
prototype for the gas flow rate controlier on a six-arc, 8000-kilowatt
plasma facility.

2. Basic Design

Consider a set of tanks connected in series by sonic orifices of
succeedingly smaller size as in Figure 1. In each tank the discharge
orifice is much smaller than the input orifice so that when sonic flow
conditions are established, the mass flow rate out of a given tank is
small compared to the input rate. The mass flow rate relation is:

zA = CA P T - / 2 (1)

where ri is the mass flow rate of gas moving through an orifice of
area, A, with an orifice coefficient, C. The upstream gas pressure
and temperature are P and T, respectively. The mass of gas in a
given tank is a function of time given by:

m(n) n) - rh(n+ 1) -M(n)] dt foT rni(n) dt (2)
o 0

where m is the mass of gas in a given tank labeled, n, and ri(n) is the
flow rate of gas into, and ni(n + 1) and IA(n) are flows out of the tank.
By substituting Equation (1) for r&(n) in Equation (2) , then

m(n) fo CA P(n-l) [T(n-)] / dt (2a)



If the tanks are such that isothermal conditions prevail, then

CA [T(n-1)] /Z may be taken to be a constant, G(n-1). For the
moment, also assume that P(n-l) = K(n-1)tn l; that is, the
pressure in the supply tank is increasing according to an integral
power of time so that

re(n) G(n-l1) • K(n- 1) fo I t n-ldt (2b)

or mr(n) G(n-l) K(n-l) tn/(n-l). (Zc)

Again if isothermal conditions prevail, P(n) is proportional to m(n),
and the pressure in the nth tank is proportional to tn provided the
pressure in the n-I tank is proportional to tnl. If the zero tank is a
constant pressure source such as a fixed pressure supply line, then
the pressure in the first tank will be proportional to the time, t. The
pressure in the second tank will be proportional to t2 , and so forth.

By tapping each of the tanks with small sonic orifices and discharg-
ing gas into a common plenum, the mass flow rate of gas into the
plenum will not materially change the pressure in the tank. The sum
of all the mass flow rates will be E M4(n), and the pressure at time, t,
which is proportional to the integral of this sum will be

P(p) = K(p) f' M 1M(n) dt (3)

where (p) refers to the pelnum. (See Figures 1 and z. ) M(n) is the
mass flow rate out of the nth tank into the plenum. The rate coefficient

of the discharge, of the form Q(n) = C(n) A iT(n)]. , for the flow
from each tank to the plenum shown in Figure Z, is determined by the
setting of the sonic throttle valves, v(n). If the ideal gas law holds,
K(p) = RT(p)/MW, where MW is the molecular weight of the gas being
used. M(n) = Q(n) K(n) tn by the same reasoning used to determine
rh(n). The polynomial characteristic of the mass flow rate regulator is
apparent if Equation (3) is expanded, and the value given above for lk(n)
is used:

P(p) = K(p) f' [Q(o) K(o) + Q(l) K(l) t

+ Q(Z) K(2) t Z, etc.] dt (4)

or P(p) = P(p,o) + K(p) [Q(o) K(o) t + Q(l) K(l) t/ 2

+ Q(2) K(2) t3/3, etc. ] (4a)
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P(p, o) is the value of the pressure in the plenum at t = 0. Figure 2

shows the general plan for a polynomial gas flow regulator. The actual
values of the polynomial coefficients are determined by the settings of
the sonic throttles V(n) and v(n) and by the sizes of the tanks. A final
sonic throttle controls the mass flow rate 14(T) from the plenum. One

restriction on a system of this type limits its use to polynomials which
have all positive coefficients since the gas flow from each throttle adds
to the gas in the plenum.

3. Design Problems

A very serious limitation of another kind exists which practically
precludes the use of the tank system. This is the magnitude of the
initial gas flow rate and the combination of large tank sizes and high

pressures which are required. The initial assumption, that the flow
rate out of a given tank was to be small compared to the input simplified
the analysis but makes the use of such a system impractical. An
example was calculated using a fourth-degree polynomial tank system.

It is assumed M (T) is to start at 2 g/sec and rise along a fourth-degree

polynomial (as an approximation to an exponential) to 4 g/sec in 2. 5
seconds. The ploynomial used is:

m(0) [1 + at + (at) 2 /2 + (at)/6 + (CLt) 4 /241

M(0) exp (at). (5)

For the assumed conditions a = 0. 272, and at t = 2. 5 second,
at = 0.693. It is further assumed that 1) the mass flow rate out of
any one tank through any particular orifice is 1 percent of the input
mass flow rate; 2) the pressure of the system into which 1[(T) is dis-

charged is at 1 atmosphere; and 3) the sonic pressure ratio is > 2:1.
Under these conditions the tank # 1 must receive gas at a rate of
2 X l05 kg/sec and be at 32 atmospheres in 2.5 seconds from start'
The tank volume is calculated to be 1. 25 X 104 m 3 . The size of the

first tank is calculated by starting with the conditions required for the
fourth tank and working back to the first tank. In a second example
each orifice is allowed to discharge 10 percent of the gas from any one

tank. The size of tank # 1 is then only 0.9 m 3 , but operating conditions
are no longer near the ideal. Under either circumstance construction
of such systems for practical use is probably not advisable. An alter-
nate device might be one in which the polynomial tank system is used
only to supply the reference pressure on a commercially available

programable gas flow regulator. In this case the reduced gas flow
requirements would probably permit the use of tanks of a manageable
size.

3
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4. Design of a Practical System

The size problem encountered in the design of a tank polynomial
may be eliminated if a programable pressure regulator is substituted for
the tank. In this case a pressure-controlled regulator is substituted
for each of the tanks in the previous system. This permits the use of
a single relay rack of equipment to take the place of the series of large
tanks. Figures 3a and 3b show the diagrams of the polynomial regulator
system. This system has an error due to pressure drops through the
regulators. The use of adequately sized regulators, however, reduces
this error to a minimum. Figure 3a shows three of the six stages in
the regulator system which has been constructed and used. Another
system which does not place the total flow rate requirement on the first
regulator is one in which each term of the polynomial is fed separately
from the common pressure reservoir. The disadvantage of this system
is the delay introduced in the opening of the higher-term regulators
because of the high inlet pressure on all regulators. A third system is
one in which the gas for each stage is drawn from a reservoir at a pre-
scribed pressure for that particular stage; each source has as low a
pressure as possible for proper operation thus reducing the delay time
effect.

Figure 3b is a modified system which uses only one reservoir but
has separate preregulation to limit the inlet pressure to each of the
polynomial regulators. This is done so that the control pressures
required to start the regulators to opening may be kept low. Otherwise
a considerable pressure might have to be developed in the regulation
chambers to start the regulator action. This would mean that each
stage would be starting at a later time than its preceding adjacent stage.
The preregulators may be operated to produce variable inlet pressures
on each of the regulators. These variable inlet pressures may be
obtained in a manner similar to the output pressures from the regulators
as shown in Figure 3b. Such a system will essentially eliminate the
characteristic error in the initial pressures required to start the
operation of the regulators, since the head pressures on the regulators
may be kept to a minimum when the regulators start to open. When the
system calls for higher flow rate,the head pressure preregulators will
deliver higher pressures to the regulators. The arrangement shown
in Figure 3b is only one of several possible ways of achieving the
desired effect.

Figure 4 shows a regulator design which may be used to generate
negative coefficient terms by bleeding off gas from the plenum. The
requirement in this case is that the negative coefficients cannot be
generated unless the plenum pressure meets sonic throat requirements;
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that is, about twice the discharge pressure. In most practical applica-
tions this limits the lowest plenum pressure to two atmospheres. Above
this pressure, however, the pressure and/or mass flow rate in the
plenum may make any rising and/or falling pattern describable by the
particular polynomial which is constructed. The refinement shown in
Figure 3b may also be included.

5. Experimental Design and Results

A sixth-degree polynomial system of the form shown in Figure 3a

has been constructed, tested, and used in the plasma facility mentioned
previously. Since the real system is not exactly isothermal and since
inherent delays and pressure drops in the system prevent accurate pre-
setting of the flow, regulating valves are empirically adjusted. The
desired program, in this case an exponential, is approximated by a
sixth-degree polynomial. The polynomial expansion of an exponential
is of the form:

00

A exp (at) = A I (at)n/n' (6)
n=0

In many cases such as the one cited here, an approximation to the
exponential using a limited number of terms is sufficient. Here, the
exponential is approximated by:

A exp (at) % A [1 + (at) + (at)2 /2 + (at)3 /6

+ (at)4/24 + (at)S/120 (at)6/720]. (7)

This approximation is used in the design of the flow rate control equip-
ment. The polynomial terms are tabulated as functions of time, and the
value of the polynomial as a function of time is determined. The
individual gas pressures are measured at the gages, G, of Figure 3a,
and the total mass flow into the plasma facility test section is calculated
from the pressure and the known size of the throat in the plasma facility.

Trial values for valve settings are determined by observing the time
required for a given gage to indicate a prescribed pressure. The desired
pressure is calculated from the tabulated values of the polynomial com-
ponents. The valves, v, are set to a first approximation (all valves are
vernier needle valves) The program is then run for varying lengths of
time to determine the actual mass flow rate to the system. The actual
mass flow is then compared to the desired flow rate and valves, v, are
readjusted. If the pressures on the gages, G, are low, as they may well
be due to line loss, the valves,V, are readjusted also. Two or three com-
plete readjustment cycles generally will put the actual mass flow rate

kequal to the required program (within the operating errors of the system).
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Figure 5 shows a typical gas flow rate program for the plasma
facility. The curve for the theoretical sixth-degree polynomial and the
desired exponential are so close for the time interval that their separa-
tion on the graph is not practical. Their differences are plotted as a
dashed line on the same graph. Figure 6 shows the separate terms of
the sixth-degree polynomial of Equation (7). It is from these terms that
the expected values of pressures on gages, G, are calculated. The best
fit of the polynomial to the exponential would be obtained by the method
of least squares. In this case the two curves to be matched, exponential
and polynomial, are expressed analytically, and the least squares fit is
obtainable by a purely analytical technique in which the values of the
polynomial coefficients are calculated in terms of integrals containing
Legendre polynomials. The high accuracy of this procedure is not re-
quired for the application cited here, and the calculated values for the
polynomial coefficients obtained from Equation (7) are used here.

By comparing a logarithmically compressed signal to the desired
program at specified times for any particular number of terms, the
valve settings were adjusted (as described previously) to give the correct
slope and magnitude to the plenum pressure curve. When all terms were
added, the logarithmically compressed transducer voltage produced a
straight line with the appropriate slope and magnitude indicating that the
gas flow rate into the plenum was rising along the prescribed exponential.
Figure 7a shows a typical oscillographic record of the output voltage
from the pressure transducer on the plasma facility plenum. This record
was made without the electric arcs' being operated in order to show
the mass flow rate effect only. Figure 7a is the same signal after it has
been logarithmically compressed. Some deviation from the exponential
is easily shown by laying a straight edge along logarithmically com-
pressed signal line. Improvements can be made readily even in this case
but were not required for tests in which this flow rate program was used.

6. Conclusions

The polynomial gas flow rate controller (Figure 3a has been con-
structed and tested. It has been used to control the flow of air in a 600-
kilowatt, two-arc plasma facility. The prescribed program in this case
was an exponential which increased the mass flow rate by 2:1 over 2. 5
seconds (Figure 7a) . The same controller has been tested over 5:1 flow
rate range and over 1 to 10 seconds of operating time. It has performed
satisfactorily in all cases, and should do as well over more extended
ranges of operation. This device made from relatively inexpensive com-
mercially available components has proved to be a reasonable substitute
for more elaborate variable nozzle flow rate controllers.
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Tank (n-i) Tank (n) Tank (n+l)

ik(n) cC P(n-1) I(n+l) P(n)

Plenum i4(n) CC P(n) PI 'M(T)
Figure 1. A typical element (tank) for generation of a polynomial mass flow

rate control system. Conditions for proper operation require
that &(n+ 1) + U (n) << ii(n). The gas enters the tank from
the preceding tank on the left and is discharged to the succeeding
tank on the right and also to the plenum shown below the tanks.
It is the total mass flow rate of gas into the plenum from all
tanks which is proportional to the sum of the time dependent
pressures in the tanks. To produce an accurate mass flow rate
from the plenum, lf((T) must be much less than the least IfA(n).

Constant
pressure
reservoir V(l) V(2) V(3) V(4)

P(O) PMCCt P(2)G~t P (3) CC t3  () t
P(O) V () ~ v(2)2  v()()

Figure 2. An idealized fourth-degree polynomial gas mass flow rate system.
The areas labeled with P(n) are the tanks which receive gas through
valves, V(n), on the left and discharge gas to the succeeding tank
through valves, V(n + 1), on the right and to the plenum below through
valves, v(n). All valves are vernier controlled sonic throttles. The
system is assumed to be isothermal although a real system built on
this principle may not be isothermal and will require compensating
adjustments of the valves.
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Master
on-off V(1) v(2) v(3)
valve v

r~l)r(2) r(3)

P(O) R(l) R(2) R(3)

v(o) VT. V(S.) V(3)

F Plenum

Figure 3a. A three-stage polynomial gas flow regulator consisting of a

constant pressure air supply and three programable dome type
regulators. Regulators are shown with pressure control domes,
r, and regulator Valve sections, R. Valves, V, are sonic

throttles which regulate the rate of gas discharge from each
regulator into the receiver (plenum). Valves, v, are sonic

throttles used to control the rate of gas flow (and thereby the
pressure) to the pressure control domes.

Figure 3b. A polynomial gas flow regulator with programable input

pressure system to reduce starting time delays. The
regulators (o, q) are used to control the head pressure on

the main control regulators (R, r).

8



Master
on-off

_valve

VGl) 2)v3
r(l) r(2) r(3)

R(l) R(2) R(3)

(0) ?V(l) ?V(2) V(3)

x(1) x(2) x(3)

s(l) s(2) s(3)

S(1) S(2) S(3)

X(O) X(1) T X(2) X(3)

Figure 4. A polynomial gas flow regulator system with positive and
negative coefficients. This system will produce a controlled
rising and falling gas flow rate within the limitation that
pressure ratios across any of the valves remain high enough
to maintain sonic throat conditions. This in general means
that the lowest pressure in the plenum must be greater than
about two atmospheres if the bleed-off regulators (S, a) are
discharging gas to the atmosphere through the sonic throttles,
X. The valves, x, perform the same function on the (S, a)
regulators that the valves, v, perform on the regulators (R, r).
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0

Typical gas flow rate
program

10:1 increase in 10 seconds
-1

*4

.0

C'.
%10

.0 0

- /
Error " exponential-6th degree /

polynomial

/
4.4

t, -3

0II

-4 I I I I I I I I
0 1 2 3 4 5 6 7 8 9 10

seconds

Figure 5. The theoretical comparison of a desired function to the
sixth-degree polynomial substituted for it. In this case

the desired function is an increasing exponential. The
error curve (dashed line) is the difference between the
exponential and the sixth-degree polynomial obtained by

using the first seven terms in the series expansion for the
exponential (Equation 2). This polynomial is not the one
which is the best fit in the sense of a least squares fit.
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-1 .01

2.30xlO 3 t
2.66x10

4t2
2.04x10"

5t -

1 .17x10-6t
S-2

5.40x10"
8t-

4

-.4
2 .07xl10

9 t6

-3

-4

-4

0/

-6
0 1 2 3 4 5 6 7 8 9 10

seconds

Figure 6. The graphic representation of the terms in Equation (3) , the sixth-
degree polynomial approximation to the desired exponential. This
graph may be compared to the recorded pressures from each stage
of the polynomial flow rate control system to determine if valves,
v, have been set correctly. This set of curves is for a 10:1 in-
crease over 10 seconds. Typical starting 14(T) is .01 kg/sec.
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125 Torr

seconds2

Figure 7a. A typical oscillograph record of the output voltage from the
pressure transducer on the plenum of the plasma facility. This
record was made without the electric arcs' being operated in
order to show the mass flow rate effect only.

125 Torr

.4

a,

.4

I I I
0 1

seconds 2

Figure 7b. The same signal as 7a after it has been logarithmically

compressed.
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